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Abstract 

Model checking is an automatic technique for verifying sequential circuit designs and pro- 
tocols. An efficient search procedure is used to determine whether or not the specification 
is satisfied. If it is not satisfied, our technique will produce a counterexample execution 
trace that shows the cause of the problem. Although finding counterexamples is extremely 
important, there is no description of how to do this in the literature on model checking. We 
describe an efficient algorithm to produce counterexamples and witnesses for symbolic model 
checking algorithms. This algorithm is used in the SMV model checker and works quite well 
in practice. We also discuss how to extend our technique to more complicated specifications. 
This extension makes it possible to find counterexamples for verification procedures based 
on showing language containment between various types of cj-automata. 
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1.    Introduction 

Complex state-transition systems occur frequently in the design of sequential circuits and 
protocols. During the past ten years, researchers at Carnegie Mellon University have devel- 
oped an alternative approach to verification called temporal logic model checking [5, 6]. In 
this approach specifications are expressed in a propositional temporal logic, and circuit de- 
signs and protocols are modeled as state-transition systems. An efficient search procedure is 
used to determine automatically if the specifications are satisfied by the transition systems. 

One of the most important advantages of model checking over mechanical theorem provers 
or proof checkers for verification of circuits and protocols is its counterexample facility. 
Typically, the user provides a high level representation of the model and the specification to 
be checked. The model checking algorithm either terminates with the answer true, indicating 
that the model satisfies the specification, or gives a counterexample execution that shows 
why the formula is not satisfied. The counterexamples can be essential in finding subtle 

errors in complex designs. 

The main disadvantage of model checking is the state explosion which can occur if the sys- 
tem being verified has many components that can make transitions in parallel. Recently, the 
size of the transition systems that can be verified by model checking techniques has increased 
dramatically after the introduction of ordered binary decision diagrams (OBDDs) [2]. By 
applying this technique, verification of systems that have more than 10100 states has become 
possible [3, 11]. However, finding counterexamples is significantly more difficult when OB- 
DDs are used in model checking instead of explicit state enumeration techniques, especially 
when fairness constraints are involved. 

Although finding counterexamples is extremely important, as far as we know, there is no 
description of how to do this in the literature on model checking. In this paper, we describe an 
efficient algorithm to produce counterexamples and witnesses for model checking algorithms. 
The algorithm is, in fact, the one that is used in the SMV model checker developed at 
Carnegie Mellon [11] and works quite well in practice. We show how the counterexample 
facility can be used to debug a subtle asynchronous circuit design. We also discuss how 
to extend our technique to more complicated temporal formulas. This extension makes 
it possible to find counterexamples for verification procedures based on showing language 
containment between various types of u>-automata. 

This paper is organized as follows: The properties of OBDDs that we need are briefly 
discussed in Section 2. The next section describes the temporal logic CTL that we use for 
specifying properties of sequential circuits and protocols. Section 4 explains the symbolic 
model checking algorithm for CTL, and Section 5 shows how fairness constraints can be 
handled. Section 6 is the main section of the paper. We describe how counterexamples 
and witnesses are generated. We also give an example that shows how this facility can be 
used in sequential circuit verification. In the next section we extend the counterexample 
facility to a wider class of temporal properties. Section 8 describes how our techniques can 
be used to generate counterexamples for verification procedures that are based on showing 
inclusion between cj-automata. The paper concludes in Section 9 with a discussion of possible 

directions for future research. 



2. Binary Decision Diagrams 

Ordered binary decision diagrams (OBDDs) are a canonical form representation for boolean 
formulas [2]. They are often substantially more compact than traditional normal forms such 
as conjunctive normal form and disjunctive normal form, and they can be manipulated very 
efficiently. An OBDD is similar to a binary decision tree, but has the following properties: 

• Its structure is a directed acyclic graph rather than a tree. 

• Variables occur in the same order on every path from root to leaf. 

• No two subgraphs in the graph represent the same function. 

For a given variable ordering, the OBDD representation of a boolean formula is unique [2]. 

We can perform most logical operations efficiently using OBDDs. The function that 
restricts some argument X{ of a boolean function / to a constant value 6, denoted by / |r,_6, 
can be performed in time linear in the size of the original OBDD [2]. The restriction 
algorithm allows us to compute the OBDD for the formula 3xf as / \X^Q V/ |r^i. All 
16 two-argument logical operations can be implemented efficiently on boolean functions 
that are represented as OBDDs. The complexity of these operations is linear in the size of 
the argument OBDDs [2]. Moreover, equivalence of two boolean functions can be decided in 
constant time [1]. 

OBDDs are used in this paper for obtaining concise representations of relations over finite 
domains [3]. If R is n-ary relation over {0,1} then R can be represented by the OBDD of 
its characteristic function 

fR(xu..., xn) = 1 iff R(xi,. . .,.rn). 

If R is an n-ary relation over the finite domain D with \D\ > 2, R can still be represented 
as an OBDD if an appropriate binary encoding is used for D. 

3. The temporal logic CTL 

The logic that we use to specify circuits is a propositional temporal logic of branching time. 
called CTL or Computation Tree Logic [6]. In this logic each of the usual forward-time 
operators of linear temporal logic (G globally or invariantly. F sometime in the future. X 
nexttime and U until) must be directly preceded by a path quantifier. The path quantifier 
can either be an A (for all computation paths) or an E (for some computation path). Thus, 
some typical CTL formulas are AG/, which holds in a state provided that / holds globally 
along all possible computation paths starting from that state, and EF/, which holds in a 
state provided that there is a computation path such that / holds in the future on the path. 

In order to explain our verification procedure, it is convenient to express the CTL opera- 
tors with universal path quantifiers in terms of the operators with existential path quantifiers, 
taking advantage of the duality between universal and existential quantification. Conse- 
quently, in our description of the syntax and semantics of CTL, we specify the existential 



path quantifiers directly and treat the universal path quantifiers as syntactic abbreviations. 

Let P be the set of atomic propositions, then: 

1. Every atomic proposition p in P is a formula in CTL. 

2. If / and g are CTL formulas, then so are -./, fVg, EX/, E[/ U g] and EG /. 

The semantics of a CTL formula is defined with respect to a labeled state-transition 
graph. A labeled state-transition graph is a 5-tuple M = (AP,S,L, N, S9) where AP is a 
set of atomic propositions, S is a finite set of states, I is a function labeling each state with 
a set of atomic propositions, N C S x S is a transition relation, and So is a set of initial 
states. A computation path is an infinite sequence of states s0,si,s2,... such that N(si,si+i) 

is true for every i. 

The propositional connectives -> and V have their usual meanings of negation and disjunc- 
tion. The other propositional operators can be defined in terms of these. X is the nexttime 
operator: EX / will be true in a state s of M if and only if s has a successor s' such that 
/ is true at s'. U is the until operator: E[/Uj] will be true in a state s of M if and only 
if there exists a computation path starting in s and an initial prefix of the path such that 
g holds at the last state of the prefix and / holds at all other states along the prefix. The 
operator G is used to express the invariance of some property over time: EG / will be true 
at a state s if there is a path starting at s such that / holds at each state on the path. If/is 
true in state s of structure M, we write M, s |= /. A CTL formula / is identified with the 
set {s|M,s |= /} of states that make / true. We use the following syntactic abbreviations 

for CTL formulas: 

• AX / = -• EX -■/ which means that / holds at all successor states of the current state 

(/ must hold at the next state). 

• EF/ = E[trueUf] which means that for some path, there exists a state on the path 

at which / holds (/ is possible in the future). 

• AF / = -> EG -•/ which means that for every path, there exists a state on the path at 
which / holds (/ is inevitable in the future). 

• AG/ = -IEF-I/ which means that for every path, / holds in each state on the path 

(/ holds globally along all paths). 

• A[/ U g] = -iE[->g U ->/ A ->g] A -<EG-ig which means that for every path, there 
exists an initial prefix of the path such that g holds at the last state of the prefix and 
/ holds at all other states along the prefix (/ holds until g holds, along all paths). 

4.     Symbolic Model Checking 

Model checking is the problem of finding the set of states in a state-transition graph where a 
given CTL formula is true. There is a program called EMC (Extended Model Checker) that 
solves this problem using efficient graph-traversal techniques. If the model is represented as 
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a state-transition graph, the complexity of the algorithm is linear in the size of the graph 
and in the length of the formula. The algorithm is quite fast in practice [5, 6]. However, an 
explosion in the size of the model may occur when the state-transition graph is extracted 
from a finite state concurrent system that has many processes or components. 

In this section, we describe a symbolic model checking algorithm for CTL which uses 
OBDDs to represent the state-transition graph. Assume that the behavior of the concurrent 
system is determined by n boolean state variables V\,v2,..., vn. The transition relation 
R(v, v') for the concurrent system is given as a boolean formula in terms of two copies of 
the state variables: v = (vi,... ,vn) which represents the current state and v' = (v[,... ,v'n) 
which represents the next state. The formula R(v,v') is now converted to an OBDD. This 
usually results in a very concise representation of the transition relation. 

Our model checking algorithm is based on the standard fixpoint characterizations of the 
basic CTL operators. A fixpoint of T : 2s —* 2s is a set 5'' C S such that T(S') = ,$''. If r 
is monotonic, it has a fixpoint So that is a subset of every other fixpoint of r. ,S'o is called 
the least fixpoint of r and is denoted by lfp / [r(/)]. The greatest fixpoint of r, gfp / [r(/)], 
can be defined similarly as the fixpoint of r that is a superset of all other fixpoints. It can 
be shown that the least fixpoint lfp/ [r(/)] is the limit of the sequence of approximations 

False, r(False), r2(False),..., r'(False),... 

and the greatest fixpoint gfp/ [r(/)] is the limit of the sequence of approximations 

True, r(True), r2(True),..., r'(True),... 

When the state-transition graph is finite, both of these sequences are guaranteed to converge 
in a finite number of steps. 

Each of the basic CTL operators can be characterized as a least or greatest fixpoint of 
some functional r : 25 —► 25. In particular, it is shown in [5] that 

• E[/ U g] = lfp Z [g V (/ A EX Z)\, and 

• EG/ = gfpZ[/AEXZ]. 

The symbolic model checking algorithm is implemented by a procedure Check that takes 
the CTL formula to be checked as its argument and returns an OBDD that represents exactly 
those states of the system that satisfy the formula. Of course, the output of Check depends 
on the system being checked; this parameter is implicit in the discussion below. We define 
Check inductively over the structure of CTL formulas. If / is an atomic proposition i\, then 
Check(f) is simply the OBDD for vt. Formulas of the form EX/, E[/U#], and EG/ art- 
handled by the procedures: 

Check{EXf) = CheckEX{Check(f)), 
Check(E[fVg]) = CheckEU{Check{f), Check{g)), 
Check{EGf) = CheckEG{Check{f)). 

Notice that these intermediate procedures take boolean formulas as their arguments, while 
Check takes a CTL formula as its argument.   CTL formulas of the form / V g or ->f are 



handled using the standard algorithms for computing boolean connectives with OBDDs. 
Since AX/, A[/ U g] and AG / can all be rewritten using just the above operators, this 

definition of Check covers all CTL formulas. 

The procedure for CheckEX is straightforward since the formula EX / is true in a state 

if the state has a successor in which / is true. 

CheckEX (f(v)) = 3v' [f(v') A R(v,v% 

If we have OBDDs for / and R, then we can compute an OBDD for 

3v'[f(v')AR(v,v')]. 

using the BDD operations given in Section 2. 

The procedure for CheckEU is based on the least fixpoint characterization for the CTL 

operator EU. 

CheckEU (f(v),g{v)) = lfpZ(ü) [g{v) V {f(v) A CheckEX(Z(v)))]. 

In this case we can compute the sequence of approximations 

QQI Qli • • ■ i Qii • ■ • 

for the least fixpoint as described above. If we have OBDDs for /, g, and the current 
approximation Qi, then we can compute an OBDD for the next approximation Ql+i. Since 
OBDDs provide a canonical form of boolean functions, it is easy to test for convergence by 
comparing consecutive approximations. When Qi = Qi+U this process terminates. The set 
of states corresponding to E[/ U g] will be represented by the OBDD for Qi. 

CheckEG is similar. In this case the procedure is based on the greatest fixpont charac- 

terization for the CTL operator EG 

CheckEG{f{v)) = gfpZ(ü) [/(CO A CheckEX {Z(v))}. 

If the OBDD for / is given, then the sequence of approximations for the greatest fixpoint 
can be used to compute the OBDD representation for the set of states that satisfy EG/. 

5.     Fairness Constraints 

Next, we consider the issue of fairness. In many cases, we are only interested in the correct- 
ness along fair computation paths. For example, if we are verifying an asynchronous circuit 
with an arbiter, we may wish to consider only those executions in which the arbiter does not 
ignore one of its request inputs forever. This type of property cannot be expressed directly 
in CTL. In order to handle such properties we must modify the semantics of CTL slightly. 
A fairness constraint can be an arbitrary set of states, usually described by a formula of 
the logic. A path is said to be fair with respect to a set of fairness constraints if each 
constraint holds infinitely often along the path. The path quantifiers in CTL formulas are 
then restricted to fair paths.   In the remainder of this section we describe how to modify 



the algorithm above to handle fairness constraints. We assume the fairness constraints are 
given by a set of CTL formulas H = {hi,..., hn}. We define a new procedure CheckFair 
for checking CTL formulas relative to the fairness constraints in H. We do this by giving 
definitions for new intermediate procedures CheckFairEX, CheckFairEU, and CheckFairEG 
which correspond to the intermediate procedures used to define Check. 

Consider the formula EG/ given fairness constraints H. The formula means that there 
exists a path beginning with the current state on which / holds globally (invariantly) and 
each formula in H holds infinitely often on the path. The set of such states 5' is the largest 
set with the following two properties: 

1. all of the states in S satisfy /, and 

2. for all fairness constraints h^ € H and all states 5 £ 5', there is a sequence of states of 
length one or greater from s to a state in 5' satisfying h^ such that all states on the 
path satisfy /. 

It is easy to show that if these conditions hold, each state in the set is the beginning of an 
infinite computation path on which / is always true, and for which every formula in II holds 
infinitely often. Thus, the procedure CheckFairEG(f{v)) will compute the greatest fixpoint 

n 

gfp Z(v) [f(v) A f\ CheckEX(CheckEU(f(v), Z(v) A Check{hk)))}. 

The fixed point can be evaluated in the same manner as before. The main difference is that 
each time the above expression is evaluated, several nested fixed point computations are 
done (inside CheckEU). 

Checking EX/ and E[/ U g] under fairness constraints is simpler. The set of all states 
which are the start of some fair computation is 

fair(v) = CheckFair(EG True). 

The formula EX/ is true under fairness constraints in a state .s if and only if there is a 
successor state .s' such that s' satisfies / and s' is at the beginning of some fair computation 
path. It follows that the formula EX/ (under fairness constraints) is equivalent to the 
formula EX(/A fair) (without fairness constraints). Therefore, we define 

CheckFairEX {f{v)) = CheckEX{f{v) A fair{n)). 

Similarly, the formula E[/ U g] (under fairness constraints) is equivalent to the formula 
E[/U (g A fair)] (without fairness constraints). Hence, we define 

CheckFairEU(f{v),g{v)) = CheckEU{f{v),g(v) A fair(v)). 

6.     Counterexamples and Witnesses 

One of the most important features of CTL model checking algorithms is the ability to 
find counterexamples and witnesses.   When this feature is enabled and the model checker 
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determines that a formula with a universal path quantifier is false, it will find a computation 
path which demonstrates that the negation of the formula is true. Likewise, when the model 
checker determines that a formula with an existential path quantifier is true, it will find a 
computation path that demonstrates why the formula is true. For example, if the model 
checker discovers that the formula AG / is false, it will produce a path to a state in which 
->f holds. Similarly, if it discovers that the formula EF / is true, it will produce a path to 
a state in which / holds. Note that the counterexample for a universally quantified formula 
is the witness for the dual existentially quantified formula. By exploiting this observation 
we can restrict our discussion of this feature to finding witnesses for the three basic CTL 

operators EX, EG, and EU. 

We start by considering the complexity of finding a good witness for the formula EG / 
under the set of fairness constraints H = {hu..., hn). We will identify each hz with the 
set of states that make it true. Given a state s satisfying EG /, we must exhibit a path 
7T starting with s, such that / holds at each state, and every fairness constraint h G H is 
satisfied infinitely often along the path TT. Since the witness is an infinite path, we must find 
a finite representation for it. It is easy to see that a witness can always be found that consists 
of a finite prefix followed by a repeating cycle. Each fairness constraint hi is satisfied at least 
once on the cycle. Such a path is called a finite witness. The length of a finite witness is 
defined as the total length of the prefix and the cycle. It is desirable to find a finite witness 
with minimal length; however, this problem is NP-complete. 

Theorem 1 // fairness constraints are permitted, finding a finite 'witness with minimal 

length for the formula EG True is NP-complete. 

Proof: It is relatively easy to see that this problem in NP. The prefix of a minimal finite 
witness cannot contain a cycle, so its length is bounded by the number of states. The cycle 
of a minimal finite witness can be decomposed into several simple cycles. Each simple cycle 
must contain a state that satisfies a fairness constraint that does not hold in any other simple 
cycle. Otherwise, we can eliminate this simple cycle from the witness. The length of the 
complete cycle is therefore bounded by the product of the number of fairness constraints 
and the number of states. Consequently, it is possible to guess a prefix and cycle and check 
to see whether they constitute a minimal finite witness in polynomial time in the size ot the 

graph. 

Finding a Hamiltonian cycle for a directed graph is known to be an NP-complete problem. 
Thus, it is sufficient to prove that the Hamiltonian cycle problem can be reduced to the 
minimal finite witness problem. Consider an instance of the Hamiltonian cycle problem for 
a directed graph with n nodes. This graph is treated as a state-transition graph and the 
set of fairness constraints H = {hr,..., hn] is selected so that each state satisfies a distinct 
fairness constraint. On any finite witness, each state must appear at least once on the cycle; 
hence, the length of the finite witness must be at least n. The length of the minimal finite 
witness is'n if and only if the n states on the path form a Hamiltonian cycle. Thus, the 
Hamiltonian cycle problem reduces to finding a minimal finite witness and checking if this 
path has length n. This reduction can be performed in polynomial time. Consequently, the 

minimal finite witness problem is also NP-complete. □ 
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Although we are unable to find the minimal finite witness easily, we still want to obtain 
a finite witness that is as short as possible. In order to accomplish this task, we will need to 
examine the strongly connected components of the transition graph determined by the Kripke 
structure. We will say that two states st and s2 are equivalent if there is a path from Si to s2 

and also from s2 to S\. We will call the equivalence classes of this relation strongly connected 
components. We can form a new graph in which the nodes are the strongly connected 
components and there is an edge from one strongly connected component to another if and 
only if there is an edge from a state in one to a state in the other. It is easy to see that the 
new graph does not contain any proper cycles, i.e., each cycle in the graph is contained in 
one of the strongly connected components. Moreover, since we only consider finite Kripke 
structures, each infinite path must have a suffix that is entirely contained within a strongly 
connected component of the transition graph. 

Recall that the set of states that satisfy the formula EG/ with the fairness constraints 
H is given by the formula 

gfpZ[/A /\EX(E[/UZ A/>,])] (1) 
k=l 

For brevity, we will use EG / to denote the set of states that satisfy EG / under the fairness 
constraints H. We construct the witness path incrementally by giving a sequence of prefixes 
of the path of increasing length until a cycle is found. At each step in the construction we 
must ensure that the current prefix can be extended to a fair path along which each state 
satisfies /. This invariant is guaranteed by making sure that each time we add a state to 
the current prefix, the state satisfies EG/. 

First, we evaluate the above fixpoint formula. In every iteration of the outer fixpoint 
computation, we compute a collection of least fixpoints associated with the formulas E[/ U 
Z A /i], for each fairness constraint h € //. For every constraint li, we obtain an increasing 
sequence of approximations QQ, Q^Q^,..., where Q^ is the set of states from which a state 
in Z A h can be reached in i or fewer steps, while satisfying /. In the last iteration of the 
outer fixpoint when Z = EG/, we save the sequence of approximations Qh for each h in //. 

Now, suppose we are given an initial state s satisfying EG/. Then .s belongs to the set 
of states computed in equation (1), so it must have a successor in E[/ U (EG/) A h] for 
each h 6 H. In order to minimize the length of the witness path, we choose the first fairness 
constraint that can be reached from .s. This is accomplished by testing the saved sets Q1- for 
increasing values of i until one is found that contains some successor t of s. Note that since 
t G Qf, it has a path to a state in (EG/) A h and therefore / is in EG/. If /' > 0, we find a 
successor of t in Q{_\- This is done by finding the set of successors of /, intersecting it with 
Qi-n ana" then choosing an arbitrary element of the resulting set. Continuing until /' = 0, we 
obtain a path from the initial state 5 to some state in (EG/) A h. We then eliminate h from 
further consideration, and repeat the above procedure until all of the fairness constraints 
have been visited. Let s' be the final state of the path obtained thus far. 

To complete a cycle, we need a non-trivial path from s' to the state / along which each 
state satisfies /. In other words, we need a witness for the formula {.s'} A EXE[/U {/}]. If 
this formula is true, we have found the witness path for 5. This case is illustrated in Figure 
1. If the formula is false, there are several possible strategies. The simplest is to restart the 
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Figure 1: Witness is in first strongly connected component 

procedure from the final state s'. Since {s'} A EXE[/U{i}] is false, we know that s' is not 
in the strongly connected component of / containing t, however s' is in EG/. Thus, if we 
continue this strategy, we must descend in the directed acyclic graph of strongly connected 
components, eventually either finding a cycle IT, or reaching a terminal strongly connected 
component of /. In the latter case, we are guaranteed to find a cycle, since we cannot exit 
a terminal strongly connected component. This case is illustrated in Figure 2. 

A slightly more sophisticated approach would be to precompute E[(EG/) U {t}]. The 
first time we exit this set, we know the cycle cannot be completed, so we restart from that 
state. Heuristically, these approaches tend to find short counterexamples (probably because 
the number of strongly connected components tends to be small), so no attempt is made to 

find the shortest cycle. 

The witness procedure for EG/ under fairness constraints H can be used to extend 
witnesses for E[/ U g] and EX/ to infinite fair paths. Let fair be the set of states that 
satisfy EG True under the fairness constraints H. We can compute E[/U </] under H by 
using the standard CTL model checking algorithm (without fairness constraints) to compute 
E[/ U (g A fair)]. Similarly, We can compute EX/ by using the standard CTL model 

checking algorithm to compute EX(/ A fair). 

In order to test the procedure for finding counterexamples when fairness constraints are 
used, we have examined an error in an arbiter design originally developed by Seitz [12]. The 
circuit is shown in Figure 3; it is designed to be speed independent, which means that each 
gate can take an arbitrarily long time to respond to its inputs. Fairness constraints are used 

to ensure that every gate eventually responds. 

An attempt was made to verify the circuit using an explicit state model checker [7]. 
However, the attempt failed because the number of states was too large. In order to complete 
the verification, one of the input devices had to be disabled. By using symbolic model 
checking techniques, we are able to verify the original circuit without using any simplifying 
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assumptions. The model contains 33,633 reachable states, and the entire verification takes 

only a few minutes. 

We have verified several liveness properties which require that each request signal in- 
evitably leads to an acknowledgement signal. Such properties can be easily represented by 
CTL formulas with the form AG(r -» AFa), where r represents a request and a represents 
an acknowledgment. An error was discovered when the specification AG(irl —>■ AF tal) 
was checked. The algorithm given earlier in this section found a counterexample that was 
seventy eight states long and had a cycle with length thirty. The counterexample showed 
that the following execution sequence was possible. The circuit could reach a state where 
every node was low except meol if the ME element took a long time to respond. When 
url was issued, trl, tal, sr, sa and ual became true consecutively. Because of the long 
delay of the 0R1 gate, meil remained low. Eventually, the ME element responded to its 
inputs and set meol low. This caused trl and tal to become low. Next, 0R1 responded 
and meil became high. Then, the ME element and the AND1 gate caused trl to become 
high again while tal continued to be low. In this state, the formula trl —*■ AF tal was false. 
Since ual was already high, url could become low. This caused trl to become low. The 
counterexample showed that url was always low. Therefore, tal remained low as well. A 
correction for the error was proposed in [7], but will not be discussed here. 

7.     Counterexamples and Witnesses for CTL* Formulas 

In the previous sections, we described how to perform model checking and find counterexam- 
ples or witnesses for CTL formulas. However, some temporal properties that are important 
for reasoning about sequential circuit designs and protocols cannot be expressed by CTL for- 
mulas. In these cases, an extension of CTL, called CTL*, is often used. There are two types 
of formulas in CTL*: state formulas (which are true in a specific state) and path formulas 
(which are true along a specific path). As before, let AP be the set of atomic propositions. 
The syntax of state formulas is given by the following rules: 

• If p € AP, then p is a state formula. 

• If / and g are state formulas, then ->/ and / V g are state formulas. 

• If / is a path formula, then E(/) is a state formula. 

Two additional rules are needed to specify the syntax of path formulas: 

• If / is a state formula, then / is also a path formula. 

• If / and g are path formulas, then ->/, / V g, X/, and / U g are path formulas. 

CTL* is the set of state formulas generated by the above rules. The logical connectives -i 
and V have their usual meaning. The formula E(/) is true in a state when there exists a 
path from the state such that / holds along the path. Let TT = .s0, su ... be a path. We use 
IT* to denote the suffix of it starting at s,-. A state formula holds along TT when it is true in 
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the first state So- X/ holds along it when / holds along IT
1
 . Finally, the formula f\Jg holds 

along TC when there exists a k > 0 such that g holds on ivk and / holds along every irJ where 
0 < j < k. The following abbreviations are used in writing CTL* formulas: 

./A<7 = -(-/V-<7) •Ff = trueUf 
• A(/) = -E(-/) .G/ = -F-/ 

In general, model checking is very expensive for CTL* formulas. However, for a large 
class of formulas which have the form E V"=i /\%i(GF ptJ V FG qtJ■), efficient model checking 
algorithms exist [8]. Because 

E v A(GF^ vFG%) = VE }\(GFPuvFG^)5 
i=i i=i 1=1  j=i 

it is sufficient to check formulas having the form EAJ=I(GFPJ V FGr/j). A fixed point 
characterization for these formulas is given in [8] 

n n 

E /\(GFPj V FG9j) = EFgfpy[/\((9j A EXV) V EXE[V'U(pj A V')])]. 
i=i j=o 

By performing a computation that is similar to the one described in Section 5, we are able 
to check the restricted class of CTL* formulas mentioned above. The problem of finding 
witnesses for these formulas is more complicated. Suppose that we want find a witness for 
so \= EA"=i(GFpj V FGqj). It is easy to see that 

E/\(GFPiVFG9i) 

n-l 

=   E /\(GFPjVFG9j)A(GF/)„VFGr/n) 

=    [E/\(GFPjVFGgj)AGF/)nj V ( E /\ (GFPj V FG <Ll) A FG qn j . 

Consequently, if s0 f= E A"=/(GFpj V FG^) A FG(/„, it is sufficient to find a witness for 
this formula; otherwise, a witness must exist for EAj=i'(GFPj V FG</,) A GF/>„. If we 
continue this process for the remainder of the formula, we will eventually obtain a formula 
which has the form E FG qh A . .. A FG qik A GF pJl A . . . A GF pjn_k. Because 

E(FG f/.-.A.. .AFG qik AGFpj, A... AGF/>jn_J = EF EG(f/„A...A^AF/jjlA... AF/>,„_,). 

this formula is true if and only if the CTL formula EG(r/M A ... A qlk) is true under the 
fairness constraints pjl,..., Pjn_k. A witness can be computed in exactly the same manner 
as in the last section. 



8.      Counterexamples for Language Containment Problems 

An alternative technique for verifying finite-state systems is based on showing language in- 
clusion between finite u;-automata [9, 10, 13]. We model the system to be verified by an 
w-automaton Ksys. The specification to be checked is given by a second w-automaton Kspec. 
The system will satisfy its specification if the language accepted by Ksys is contained in 
the language accepted by Kspec, i.e. C(Ksys) C £{Kspec)- In this section we show how the 
techniques described in last section can be used to find counterexamples for language con- 
tainment problems. Although there are many types of u;-automata, in this paper we only 
consider Streett automata. These automata are particularly useful for modeling systems 
with complicated fairness constraints that cannot be handled using the technique described 
in Section 5. Counterexamples for other types of u;-automata can be determined in a similar 
manner by using results from [4]. In general, checking language inclusion between two non- 
deterministic w-automata is PSPACE-hard. For this reason we require that the specification 
automaton be deterministic. We require that both automata be complete. 

A (nondeterministic) w-automaton is a 5-tuple K = (S, s0, E, A,F), where 

• S is a finite set of states 

• So G S is the initial state 

• S is a finite alphabet 

• AC.S'xSxS'is the transition relation 

• F is the acceptance condition. 

The automaton is deterministic if for all states s,tut2 G S and input symbols a G S, 
if (s,a,ti) and (s,cr,t2) are two transitions in A, then tx = t2. The automaton is complete 
if for every state s G S and for every symbol a G S, there is a state s' G S such that 
(s,a,s') G A. An infinite sequence of states s0sts2... G S" is a run of an ^-automaton if 
there exists an infinite sequence a0o-ia2 ... G S" such that Vi > 0, {si,<Ti, s,-+i) G A. The 
infinitary set of a sequence s0s1s2 ... G Sw, denoted by inf(s0si • • •), is the set of all the states 
that appear infinitely many times in the sequence. The Streett acceptance condition has the 
form F = {(UUVL), ..., {Un, Vn)}, where £/,-, Vt C S. A sequence a0axa2... G S" is accepted 
by a Streett automaton if there is a corresponding run s0sv$2 ... G Sw with the property 
that for every i G {1,... ,n}, inf(r) C U{ or inf(r) f~l Vt ^ 0. The set of sequences accepted 
by an automaton M is called the language of M and is denoted by C(M). 

Let K = (5,s0,S,A,F), K' = (S',s'0, S, A', F') be a pair of Streett automata over the 
same alphabet. It is shown in [4] that the path formula <f)F expresses the acceptance condition 

of K: 
<j>F=    f\   (FG(Vs)VGF(V*)), 

{u,v)eF        seu s&v 

and that -><^F' expresses the negation of the acceptance condition for K': 

^F,=      V     (GF( V ^)AFG( V_^)) 
(V',v')£F> seTF sev 
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Let M(K,K') = (S x 5", (so,-Sg),£,7£) be a state-transition system such that C(s,s') = 
{s,s'} and (s,s')TZ(t,t') <& (3a G E : (s,<M) G A and (s',a,0 G A). If K is a nondeter- 
ministic Streett automaton and K' is a deterministic Streett automaton, then 

C(K) C £(/C) ^ M{K,K') (= -E(</>F A -^) 

where </>F and -^F' 
are the formulas given above. Note that the above equivalence does not 

hold if K' is a nondeterministic automaton. The formula E(</>p A ->^F') is equivalent to 

(    A    (FG(Vs)VGF(Vs)))A|      V     (GF(V*)AFG(V*))1 
\(u,v)eF stu sev     )       \(U',v)eF' seTJ7 sep^     / 

A   (FG(Vs)VGF(V*))]AGF(V ^)AFG( V *))• 

This formula is an instance of the CTL* formulas discussed in last section. Thus, the 
technique given in last section for finding witnesses can be used to find a counterexample 
when C(K) is not contained in C(K'). Counterexamples for the language inclusion problems 
of Büchi, Muller, Rabin, and L automata can be found in essentially the same way. 

9.     Directions for Future Research 

In this paper, we have described an efficient technique for generating counterexamples and 
witnesses for symbolic model checking algorithms. However, when the number of reachable 
states is very large, the counterexample can still be very long. Techniques for generating 
even shorter counterexamples will make symbolic model checking more useful in practice. 

Finding a counterexample can sometimes take most of the execution time required for 
model checking. Additional research is needed to develop more efficient algorithms. This is 
particularly important because the model checking algorithm may need to be invoked several 
times in order to find the witness for a CTL* formula. 

Another problem with the counterexample generated by the model checker is that it is 
sometimes hard to read. A more readable form will be helpful to engineers who are not 
familiar with model checking. 
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